Two-Dimensional Semiconductors
In-depth overview of two-dimensional semiconductors from theoretical studies, properties to emerging applications!
Two-dimensional (2D) materials have attracted enormous attention due to their exotic properties deriving from their ultrathin dimensions. 2D materials, such as graphene, transition metal dichalcogenides, transition metal oxides, black phosphorus and boron nitride, exhibit versatile optical, electronic, catalytic and mechanical properties, thus can be used in a wide range of applications, including electronics, optoelectronics and optical applications.
Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications provides an in-depth view of 2D semiconductors from theoretical studies, properties to applications, taking into account the current state of research and development. It introduces various preparation methods and describes in detail the physical properties of 2D semiconductors including 2D alloys and heterostructures. The covered applications include, but are not limited to, field-effect transistors, spintronics, solar cells, photodetectors, light-emitting diode, sensors and bioelectronics.
* Highly topical: 2D materials are a rapidly advancing field that attracts increasing attention
* Concise overview: covers theoretical studies, preparation methods, physical properties, potential applications, the challenges and opportunities
* Application oriented: focuses on 2D semiconductors that can be used in various applications such as field-effect transistors, solar cells, sensors and bioelectronics
* Highly relevant: newcomers as well as experienced researchers in the field of 2D materials will benefit from this book
Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications is written for materials scientists, semiconductor and solid state physicists, electrical engineers, and readers working in the semiconductor industry.
Two-dimensional (2D) materials have attracted enormous attention due to their exotic properties deriving from their ultrathin dimensions. 2D materials, such as graphene, transition metal dichalcogenides, transition metal oxides, black phosphorus and boron nitride, exhibit versatile optical, electronic, catalytic and mechanical properties, thus can be used in a wide range of applications, including electronics, optoelectronics and optical applications.
Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications provides an in-depth view of 2D semiconductors from theoretical studies, properties to applications, taking into account the current state of research and development. It introduces various preparation methods and describes in detail the physical properties of 2D semiconductors including 2D alloys and heterostructures. The covered applications include, but are not limited to, field-effect transistors, spintronics, solar cells, photodetectors, light-emitting diode, sensors and bioelectronics.
* Highly topical: 2D materials are a rapidly advancing field that attracts increasing attention
* Concise overview: covers theoretical studies, preparation methods, physical properties, potential applications, the challenges and opportunities
* Application oriented: focuses on 2D semiconductors that can be used in various applications such as field-effect transistors, solar cells, sensors and bioelectronics
* Highly relevant: newcomers as well as experienced researchers in the field of 2D materials will benefit from this book
Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications is written for materials scientists, semiconductor and solid state physicists, electrical engineers, and readers working in the semiconductor industry.
KES 18,967
International delivery
Free click & collect
UPC | 9783527815951 |
---|---|
Author | Jingbo Li, Zhongming Wei, Jun Kang |
Pages | 192 |
Language | English |
Format | EPUB |
Publisher | Wiley |
SKU | 9783527815951 |
None