Robust Statistics

by Ricardo A. Maronna, R. Douglas Martin, Victor J. Yohai, Matías Salibián-Barrera

This is an eBook that you can download electronically.

A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R.

Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book.

Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates.

  • Explains both the use and theoretical justification of robust methods
  • Guides readers in selecting and using the most appropriate robust methods for their problems
  • Features computational algorithms for the core methods

Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models.

Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

SKU: 9781119214670 Format: PDF
KES 17,461
International delivery
Free click & collect
When you buy an ebook from TBC, you will be given a code to download your purchase from our ebook partner Snapplify. After you have redeemed the code and associated it with a Snapplify account, you'll need to download the Snapplify Reader to read your ebooks. The free Snapplify Reader app works across iOS, Android, Chrome OS, Windows and macOS; on tablets and mobile devices, as well as on desktop PCs and Apple Macs.

You're currently browsing Text Book Centre's digital books site. To browse our range of physical books as well as a wide selection of stationery, art supplies, electronics and more, visit our main site at textbookcentre.com!

Reviews

This product does not have any reviews yet.

Add your review